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Abstract

A Gelfand basis is used to derive the coefficients of fractional marentage
(CFP's) used to calculate intensitiecs f-v x-rayv photoclectron spectioscopny of atoms.
Using associated Gelfand bases, we show chat it is casy to derive the Racah CFP
relations between "particles" and "holes."

The use of unitary techniques to calculate electronic matrix elements for atomic
configurations has the advantage of avoiding the use of coefficients of fractional
parentage (CFP's), sums over permutations, and recoupling cocfficicnt's.l_lo Hownver,
in order to relate the unitary apprmach to that of Racah,ll we wish to show the ease
in which CFP's caa be derived using a unitary basis. TFurthermore, we show that
Racah's relationships Lotween CFP's for "marticles” and "holes" follow naturally
using the unitary approach.

'The mathematical problem treated here is ogiivalent to the derivation of the
relative number of clectrons which will be found in the lowest cnerqy peaks of an
X-ray photoclectron spectrum of an atom. Assume the atom has an outer shell config=-
uration of n different f-clectrons ard hefore irradiation is known to be in a state
:Q“IML,5> with total orbital angular momentum L and spin S. The vrobability that
the atom will be left in a state Iln']‘fﬁL,§> after irradiation is simply

N - n—l-- S N ! 3 2 =
v a2 "Eﬁ;l,l Ty Sixlu |2 6012, (0l = 2, (1)

where we sum over f£inal states ﬁ] and average over initial states ML Wo shall de-
rive thoe normalization constant N below. The unitary qonorator
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1 ammltipole operator which destroys any particlo in state I‘Z.u_.‘-'t and croates a
scattorad stato Ix?-j‘.
The deseriptlon of the anfssion ntato [x> {0 loft vathor vaque.  Since no volari-

ziwon or angular depondence 18 ineluded, wo shall assaame that x> s a schorleally
symmetric s=stata |00 =0, ‘That is
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such that

“-:oolEquaq:-“ = M.:00] (-1)%_(“](n) ™ =1 (4)
if the nth particle is in state |%q>. Clecarly, a more detailed nicture which ac-
counts for polarized x-rays and the target structure will give rise to morc compli-
cated tensorial forms than in BEg. (3).

From the definition of CFP's below for antisymmetrized spin-orbit states

"\1—1"n_lE‘T'L'§-‘s’ xa| (-1)WV -}1 |n 2" >
q“,s L L ap BN (5)

it follows that
|<n-."']iﬁ’_‘,§; xlEmllnIML,S>|2

= 2 2
_ L L n-l-=
=n ( q ML) (% lr.sl]z“rs) . (6)

The above cquation is a consequence of the fact that
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iﬁq 2L B x| B 0,85 (7)

as shown bv Drako and Schlcsingor.lz

I'rom ki, (1) we find
v = (PHES) (8)

whore

ha total. probabllity iy thon
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as desired The fact that the photoelectron shectral intensities are nrovortional
to the CFP's was oriqinally shown by Cox and Or-chard.13

We can now cvaluate the CFP's in Fa. (6) using felfand hases. “e first necd
to cxpand the states IQnTML,S‘- in terms of Gelfand states. ™is has been done hy
Cairdl"1 for all shells un to ¢ = 3 (f-elections) and is cffected bv lowering from
the highest ML state (P‘lL = L) which is alwavs a simple elfand '.-'.t;.xte.';’6

For example, below are some states for the n-shell up to the half-filled p°
confiquration
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p° DL,0> = 11 ) R -
oo, =8 A +JZEE [P0 -] IE-{3
|p2 D-1,0> = 2] 3]
Ipz D-2,0> =
lp3 Dzil'i'\ = l]
3 . L 12JJ'1_11] g _JTl_.ng
lp” DL ‘J; 2]~ "Nz [3 Ip" L% ={7 5 e
3 ~ .3 1a|JT;s 3 . ]1_2 3 [1[3]
103 Do, _J; 3 A B |03 PO, = =7 +J; 3 )
,1' 1[3 2|2 3 A E 2[2
b -1, = 7 ) +\E- 2 ln® »-1,% =J; 33--\[}- 3]

I

lp° D-2%

N
wad
——td

Now if we order the states as in Fy (9) such that the ¢ = €,0-1,..., =4;%x are
1,2,..., 2041;2242 then Exq is an clomontiy generator off SU(2842) for o = - 0,
The matrix clements of tho clomentary generators may be readily cvaluated in the
Gelland basis using the algoritims shown In Flg. 1.4'6 Wo notoe that the phasces

in Pig. 1 diffor from thoso used by Drake and Schlosingoer in Ref. 12 to dorive Iq. (7).
Howover, since we are concernad wlith the abuolute value of the CG'P'se, k. (6) s

st111 valld,

rom la. 1owo Find, usdng o s = 4
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"Fig.I.Tableau Formulas fcr Electronic Orbital {zerz<ors

(a) Number »pecrators E,; arz diagornal.(The only eigen-
values for ortitalstates are 0. 1,anc 2.)
(b) Raising and lowering oreraturs are simply transpcses
of each other.

-h) E. .
(c-n) 1i-1,1

acting cn a tableau state gives s
there is an (1) in a colunn of the itadleau that doesn't

already have an (i-1),too. Then i% gives back a new siate
£,
4

T
with the (i) changed to{i-1) and a factor (matrix

that depends on where the other (i)'s and (i-1)'s are lisccz*=4.

to (i) or (i-1).) Cases (¢) and {(d) involved <he "city block"
distance d which is the denominatcr of the matrix
element. The numerator is one larger (d+1) or smaller {d-1)
depending on whether the inv-1lvad tableaus favor the larzer
or smaller state number (i or i-1) witk a higher posivion.
The special cices of (d=1) showen in () always pick the
larger (and non-zero) choice of d+1=2. Ali other ron-zero

matrix elements are equal to unity.




2|

N+

Equp3 P-1,'9> = E43(\E %3] - 5..
N, 3 [1]4] T [1]3] JT22]
‘J‘z‘(‘j; 3] *\7 i) T NZ [@
3 1 . y.
- W3 - EEE a2)

;131 Ip° P0,1;x%> _‘E—Z' |p2 DO, 0;x>

+J%_ Ip? S0,0:x>

)

From Ey. 6 we f£ind

2
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Iz = 3(Cp_1_])° (®° Do[lp Pl (13)
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Evaluating the Clebsch-Gordon cofficinnts, we have the following three relative photo-
electron intensities:

(p2 Pll}p3P':)2 = 1/2
(p> 0| 1por) 2 = 5/18 (14)
(02 50|1p%Py) 2 = 2/9

Ona advantage of the unitary approach for driving G'r''s is that the same tech-
niques may be used for any shell. However, its utility is most convincing when deal-
ing with more than half filled sholls., Using the Gelfand basis, it is a sinple mattor
to relate the CFP's for less than half shells 2™ to thosa CYP's for more than half
£illea ghells Q,n* whore n* = 42 + 2 - n. In tho Racah bagis this is a diffi-ult task
and various errors oxist in the literature, A systomatic derivation of the "marticle"
and "hole" CIT 1clations, referencing those errors, has rocently boen given b
McQuim.lc

In order to discuss nore than half filled shells we first noed to derine the
Gelfand statw ok assoclated with Gelfand state |a- of conflquration . we show
the asgoclatod Gelfand states diagramatically in Wlgs, 2 ad 3.6

Using the assoclatad Gelfand state leads to vory simple relations between

"particle" and "hole" states in tho Golfand hasis. Trddoed, it has boon shown in
Ref, 6 that



Fiz.2. associated Gelfand 2acsis
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1a*> is found by completing a rectangle about 1a)
with 2 columns and 2{+1 rows.

The empty boxes are numbered 1ncreasiﬁq upward in
the columns with no number in a column repeated.

1a> is then detached from the rectangte and the
remaining pattern rotated to give 1a¥®),



Flg, 3. 4Associated Basis for jintisvmmetric and Suvin States

(al)

(bl)

| 1 (@)1 4
21 3¢
24+ 3
4] 41
5y 5%
5t 5+

41

al) A rectangle is completed about the antisymmetric

ES‘L Gelfand state of SU(4X+2) with 1 column and 4R+42
rows. The empty boxes are numbered lexically as
3T shown. Note that nt>né,

‘dl: a2) The state is then detached from the rectangle
and the remaining pattern rotated to give the

associated state.

(b2)

by )

he)

A rectangie is completed about the Gelfand state
of SU(2) with 28+1 coulumns and 2 ruws. The empty
boxes are numbered lexically as shown. Note that

t>4.

The state is then detached from the rectangle and
the remaining pattern rotated to give the associ-
ated state.
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I(Rnu‘lL) * = !z“*L-ML> (15)
and
*
I (Anon%,SMS) *> = (_l)PIAn*'Q’n L_MLIS‘MS>I (16)
where
P=n(p+5+1%) —Sz-ML.
Now, from Eq. (16) and the simple relation16
I ik |, A " S 7
= <(a lnIML,SMS)*,xo[E | ( An_lﬂ,n_]'_[__ﬁL,gp_qs)*> (-1) atsto
we have
~ S48 I L 155 (18)
vn (_‘I\SiSODdS = qML Is|1es)
- SH+5-13+4 i 8 I_. on-1 n==) , . LqHao
= (-1) fic ‘“s“" c ML 1s|}2"Es’ (-1) ,

wheren =n* + 1 = 4243 = n .

Since
m,m.m, I:31] My,
we have
@S] 10 = (oSS [IBLILIA (Rl gy (19)

Our rclation is in agrecment with the Racah's excent for a nhase factor (—l)I'H".
If we let the associated bases obey

| Py we = B >

instead of . (15), we would agrec with Racah's results. The choice of vhase is
arbitrary howover; wa vrefer Lo use the simpler relation for associatod bases
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